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Abstract. Many estimation and inference problems arising from large-scale animal
surveys are focused on developing an understanding of patterns in abundance or occurrence of
a species based on spatially referenced count data. One fundamental challenge, then, is that it
is generally not feasible to completely enumerate (‘‘census’’) all individuals present in each
sample unit. This observation bias may consist of several components, including spatial
coverage bias (not all individuals in the population are exposed to sampling) and detection
bias (exposed individuals may go undetected). Thus, observations are biased for the state
variable (abundance, occupancy) that is the object of inference. Moreover, data are often
sparse for most observation locations, requiring consideration of methods for spatially
aggregating or otherwise combining sparse data among sample units. The development of
methods that unify spatial statistical models with models accommodating non-detection is
necessary to resolve important spatial inference problems based on animal survey data.

In this paper, we develop a novel hierarchical spatial model for estimation of abundance
and occurrence from survey data wherein detection is imperfect. Our application is focused on
spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation
model for the survey data is specified conditional on the unknown quadrat population size,
N(s). We augment the observation model with a spatial process model for N(s), describing the
spatial variation in abundance of the species. The model includes explicit sources of variation
in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial
process. This provides a model-based framework for combining the spatially referenced
samples while at the same time yielding a unified treatment of estimation problems involving
both abundance and occurrence.

We provide a Bayesian framework for analysis and prediction based on the integrated
likelihood, and we use the model to obtain estimates of abundance and occurrence maps for
the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national
abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766
territories. Accounting for imperfect detection added approximately 18 000 territories, and
adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate
of the national total of about 227 000 territories. This is approximately three times as high as
previous estimates that assume every territory is detected in each quadrat.

Key words: animal abundance; Bayesian analysis; detection probability; hierarchical models;
monitoring data; occurrence probability; spatial coverage bias; spatial modeling.

INTRODUCTION

Understanding spatial and temporal patterns of

animal distribution and abundance is fundamental to

much of ecological science, and is critical for the

conservation and management of many species. Most

field investigations of distribution and spatial patterns in

abundance are based on survey data that are counts of

animals over many relatively small sample units. For

example, in avian studies, sample networks often consist

of a large number of point count locations, routes, or

areal units (e.g., the North American [Robbins et al.

1986], Swiss [Schmid et al. 2004], and British Breeding

Bird Surveys [Newson et al. 2005]), or networks of mist

net stations (e.g., the Monitoring Avian Productivity

and Survival [MAPS] Program [DeSante et al. 1995]).

Aerial transect surveys, for example of marine mammals

(Garner et al. 1999, Buckland et al. 2001) or waterfowl

(Smith 1995), are another common method of animal

sampling that yield spatially indexed counts. Using data

from such surveys, interest is frequently focused on

objectives that are relevant to the spatial organization of

sample units. Examples include (1) relating abundance

to landscape or habitat structure so that, for example,

the effect of changes in land use practices may be

assessed; (2) estimating the range of a species, or

mapping occurrence probability; or (3) estimating

abundance maps that depict spatial variation in

abundance and, when aggregated over geographic
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regions, allow for estimates of actual (e.g., regional,

national) population sizes to be obtained.

Because spatial replication is a prevalent feature of the

data in many ecological studies and inferential problems

are inherently spatial, the adoption of spatial statistical

methods to facilitate inference is critically important.

Recent years have seen explosive growth of statistical

methods aimed at developing spatial and spatiotemporal

models of count data, such as those arising from animal

surveys. These approaches are based on the view that the

counts derive from an inhomogeneous Poisson process,

and focus on developing spatial models of the Poisson

intensity. For example, log-Gaussian Cox process

models (Diggle et al. 1998, Brix and Diggle 2001, Brix

and Moller 2001, Wikle 2003) and Poisson-gamma

random field models (Wolpert and Ickstadt 1998, Best et

al. 2000) have been adopted in many application areas,

including epidemiology, demographic and health sur-

veys, and environmental assessment. Such models would

seem to provide an ideal framework for conducting

spatial inference about animal abundance and occur-

rence for animal surveys that yield abundance informa-

tion.

Unfortunately, in virtually all animal sampling

problems, these statistical procedures cannot be used

directly because one cannot observe the abundance or

occupancy state variables directly. Indeed, one of the

most important considerations in animal sampling is

that of imperfect detection and there exists a tremendous

volume of literature describing formal procedures for

estimating abundance and other demographic parame-

ters in the context of imperfect detection (e.g., Seber

1982, 1986, Pollock 2000, Buckland et al. 2001, Williams

et al. 2002, MacKenzie et al. 2006). Common approach-

es include distance sampling, ‘‘capture–recapture’’ meth-

ods based on capture or encounter data, and a myriad of

related techniques based on sampling with multiple

observers, or sequential ‘‘removal’’ of individuals. The

majority of these varied sampling protocols yield

multinomial data with index N (population size) and

cell probabilities that are functions of various parame-

ters that describe the detection process. In the context of

spatial sampling, the multinomial sample counts, x(s)

for location s, are spatially indexed, with ‘‘local

abundance,’’ say N(s), the number of animals available

to be sampled at location s.

Formally accounting for detectability is important

because observed counts are biased by imperfect

detection. Factors which influence detectability may

vary among sample locations or through time and may

not have been measured or even recognized. Similarly,

accounting for imperfect detection is essential when

making inference about occurrence because observed

zeros do not necessarily equate to absence. Despite the

importance of bias induced by sampling, the issue of

detectability is almost never considered explicitly in the

vast majority of studies of spatial variation in abun-

dance or occurrence (e.g., Gibbons et al. 1993, Lichstein

et al. 2002, Scott et al. 2002, Wikle 2003, Thogmartin et

al. 2004, Guisan and Thuiller 2005, Araujo and Rahbek

2006, Elith et al. 2006, Thogmartin et al. 2006).

Sometimes this may be an oversight, while sometimes,

especially at very large spatial (e.g., continental) scales

(e.g., Jetz and Rahbek 2002), it may rather be because

data have not been collected in a manner that yields

direct information about the detection process. The

result is that spatial or other models can be difficult to

interpret as they are not models of abundance or

occurrence per se, but rather of some aggregate index

that includes both variation in detection probability and

in abundance. Therefore, such indices are frequently

interpreted as describing ‘‘relative abundance’’ or

‘‘relative occurrence,’’ supposed, hoped, or at least

asserted to be proportional to abundance or occurrence,

respectively. However, since this is virtually never tested,

resulting models, at worst, describe patterns in the

difficulty with which organisms are detected rather than

real patterns in their abundance and occurrence. Thus,

statistical methods which seek to address spatial

inference problems on abundance and occurrence must

seek to unify these two important elements of animal

sampling: spatial sampling and imperfect detection.

Recent applications of spatial models which do address

the problem of imperfect detection to some extent

include Doherty et al. (2003), who model detection-bias-

adjusted estimates in a two-stage procedure, and Hooten

et al. (2007) who develop information about detectabil-

ity from independent data.

In this paper, motivated by spatial inference problems

in the Swiss Survey of Common Breeding Birds

(Monitoring Häufige Brutvögel [MHB]; Schmid et al.

2004) described in the next section, we develop a novel

modeling framework of animal abundance from spa-

tially referenced survey data collected in a manner that

allows for explicit consideration of detection probabil-

ity. Specifically, using the European Jay, a widespread

but elusive forest bird as case study, we consider data

resulting from repeated sampling that yields territory

encounter history data. We specify a hierarchical model

that consists of the multinomial sampling distribution

for the data, and this is augmented by a spatial model

describing variation in the abundance of territories. This

yields a rigorous and generic modeling strategy for

integrating spatially referenced survey data and address-

ing spatial inference problems such as mapping abun-

dance and occurrence and assessing the effects of

landscape or habitat structure on abundance and

occurrence. We use this model to address several spatial

inference problems such as estimation of national

abundance and occurrence maps and national abun-

dance of the jay in Switzerland. Although we are

fortunate to have encounter history data available in

our application, many other sampling protocols yield

multinomial data and so the basic model structure is

easily translated to many other spatial animal sampling

problems (see Discussion).

J. ANDREW ROYLE ET AL.466 Ecological Monographs
Vol. 77, No. 3



EXAMPLE OF A LARGE-SCALE SURVEY: THE SWISS SURVEY

OF COMMON BREEDING BIRDS

Data for our study are from the Swiss Survey of
Common Breeding Birds (Monitoring Häufige Brutvö-

gel) conducted annually by the Swiss Ornithological

Institute (Schmid et al. 2004). Our spatial sample
contains 238 1-km2 quadrats selected according to a

systematic sample as a grid from among 41 365 possible

quadrats in Switzerland (Fig. 1). Since 1999, quadrats
are surveyed three times (twice for quadrats that lie

mostly above the timberline at around 2000 m elevation)

during the breeding season (15 April–15 July) by an
experienced observer using the territory mapping

method (Bibby et al. 1992). Each quadrat is surveyed

along a quadrat-specific, irregular transect route that
aims to cover as much as possible of the quadrat area

and that averages 5.1 km in length (range 1.2–9.4).

Transect location is not chosen at random but partly in
response to habitat or other features, e.g., open water

and excessively steep areas in the mountains are

avoided. Mean survey duration is about 230 min (range

60–427 min) which translates into 48 min on average
(range 15–167 min) spent per kilometer of transect

length on each survey (Kéry and Schmid 2006).

Repeated surveys in individual quadrats are typically
spaced one month only apart, therefore we assume a

closed population of territories for the (sedentary)

species considered here. During each survey, observers
mark every visual or acoustic contact with an individual

of a potential breeding species on a map and note

additional information such as sex, behavior, territorial

conflicts, location of pairs, or simultaneous observations

of individuals from different territories. By overlaying

these survey maps, putative territories are determined

based on the knowledge of average territory size,

clustering of observations, as well as on behavioral

information such as territorial conflicts or simultaneous

observations. As is customary for this method, the

numbers of territories are often equated with the

number breeding pairs.

In the present study, we used the maps from all

quadrats surveyed in 2002 and derived ‘‘encounter

histories’’ for individual territories by determining if a

putative territory was or was not detected during a visit.

Encounter histories consist of a string of three digits,

such as ‘‘110,’’ which indicates that a particular, putative

territory was detected on the first two, but not on the

third survey. We assume, along with the various model

assumptions described elsewhere in this paper, that each

territory is recognized (but not necessarily detected)

without error. Thus, for example, if encounter histories

‘‘110’’ and ‘‘001’’ are recorded in a quadrat, we assert

that these represent two unique territories, and not an

incorrect labeling of a single territory. The adequacy of

this important assumption of correct territory recogni-

tion or labeling should be considered for each applica-

tion of our model (see relevant discussion in Application

to the Swiss Survey of Common Breeding Birds Data: The

Eurasian Jay and Discussion: Closure, territory identifi-

cation, and parametric model assumptions). The goals of

our application are to produce abundance and occur-

rence maps and to generate estimates of total abundance

FIG. 1. Locations of 238 1-km2 quadrats surveyed in 2002 in the Swiss Survey of Common Breeding Birds.
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where abundance is defined in terms of the number or

density of territories. These goals involve prediction

(e.g., of abundance) on all 41 365 quadrats in Switzer-

land.

We view the population of territories susceptible to

sampling during the breeding season in a given year as

being ‘‘closed’’ to demographic processes of recruitment

and mortality. While this assumption and the perfect

territory recognition assumption may be difficult to meet

for some species and some sampling designs, for our

species here and the Swiss bird data, we believe that both

are adequate (see Discussion). We focus on the problem

of developing a spatially explicit model for bird

abundance (i.e., territories) across Switzerland while

accommodating important sources of variation that

affect detection probability and abundance. For exam-

ple, the elevational gradient in Switzerland is severe (Fig.

2) and should be an important determinant of the

abundance of most species. We also consider the

distribution of forest cover (Fig. 3) as another likely

factor influencing the abundance of a forest species like

the jay. Data on elevation and forest cover were taken

from databases of the Swiss federal statistical office.

THE MODEL

Multinomial sampling distributions

The data resulting from capture–recapture studies on

a closed population are encounter (or capture) history

frequencies, xh for encounter history h, a possible

sequence of encounter events. For sampling that occurs

on T occasions, there are 2T possible encounter histories

(including that corresponding to ‘‘not encountered’’).

For example, in the Swiss Survey of Common Breeding

Birds, T ¼ 3, and all possible encounter histories are

shown in Table 1 where x0 is the unobservable encounter

history, and only fxh; h . 0g are observable; the

objective is to estimate the frequency x0, the number of

territories not occurring in the sample, or, equivalently,

the population size N ¼ Rh xh. Hereafter, we adopt the

conventional ‘‘bracket-notation’’ to refer to probability

distributions. The distribution of the observed encounter

history frequencies is multinomial, having probability

mass function (pmf):

½xjN; p� } N!

ðN � x:Þ!
Y7

h¼1

pxh

h

 !
ð1� p:ÞN�x: ð1Þ

where x. is the number of unique territories observed

(the sum of the observed encounter history frequencies)

and p.¼ R7
h¼1ph is the net probability of encountering a

territory in at least one of the T samples. The probability

of not detecting a territory (at all) is p0 ¼ (1 � p.). The
cell probabilities fphg are probabilities of observing each
encounter history, h, and are functions of various

nuisance parameters that describe the detection process.

For example, under a model where detection probability

varies for each sample occasion, p1 ¼ Pr(h ¼ ‘‘100’’) ¼
p1(1 � p2)(1 � p3) where pt is the probability of

encountering a territory in period t. The dependence of

x on detection probability parameters p ¼ ( p1, p2, p3)

(via ph in Eq. 1) will be indicated as [x jN, p(p)], or just
[x jN, p]. Many alternative (to capture–recapture)

FIG. 2. Elevation (km) on a 1-km2 grid in Switzerland.
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sampling protocols yield a likelihood that only differs

from Eq. 1 by the manner in which the multinomial cell

probabilities are parameterized (see Discussion).

The likelihood under spatial replication

Let sif gR
i¼1 denote the locations of the i¼ 1, 2, . . . , R

sample quadrats and let Ni [ N(si) be the unknown

‘‘local population’’ size of quadrat i and let xi¼fxih; h .

0g denote the vector of observable capture history

frequencies. The number of unique territories observed

for quadrat i is xi.¼Ni� R7
h¼1 xih. For convenience we

will reference attributes of the spatial samples by the

integer index i instead of by their locations si, except

where necessary to avoid confusion.

The contribution to the joint likelihood of the data

from quadrat i is

½xijNi; pðpiÞ� }
Ni!

ðNi � xi:Þ!
Y
h.0

phðpiÞxih

" #
p0ðpiÞxi :: ð2Þ

We suppose that, when conditioned on Ni and param-

eters of the cell probabilities ph, the data are independent
across quadrats so that the joint likelihood based on

data from all R quadrats is

½x1; x2; . . . ; xRjðNiÞRi¼1; ðpiÞRi¼1�

}
YR

i¼1

Ni!

ðNi � xi:Þ!
Y

h

phðpiÞxih

" #
p0ðpiÞxi:

( )
:
ð3Þ

It will not generally be feasible to estimate the

collection of abundance parameters Nif gR
i¼1 as distinct

parameters primarily because for most species the Ni are

small owing to small sampled area, and low densities of

many territorial birds. Consequently, the sample size

(number of territories observed) at each site will also be

small (often even 0) and there will be little point in

attempting to obtain MLEs of the collection of local

abundance and detection probability parameters. Our

solution, providing practical motivation for considering

spatial models on abundance, is to view the Ni

parameters as latent variables, for which we can specify

sensible spatial models based on considerations for the

distribution of organisms in space. This is the topic of

Spatial models of abundance. Note that the independence

assumption represented by Eq. 3 is one of conditional

(on N) independence. We would typically expect the

observed counts, xi to be spatially dependent for a

variety of reasons. Subsequently, we introduce spatial

correlation in the observed counts indirectly, by

FIG. 3. Forest cover (percentage of area) on 1-km2 quadrats in Switzerland.

TABLE 1. All possible encounter histories for the Swiss Survey
of Common Breeding Birds with three sampling occasions.

Frequency t ¼ 1 t ¼ 2 t ¼ 3

x0 0 0 0
x1 1 0 0
x2 0 1 0
x3 0 0 1
x4 1 1 0
x5 1 0 1
x6 0 1 1
x7 1 1 1
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parameterization of dependence on the unobserved

abundance parameters, Ni.

Detection probability models

Note that pi have been described as spatially explicit

here. We will now parameterize spatial variation in

detection probability as a function of measurable

covariates at each site, and possibly varying over the

course of the breeding season (Kéry et al. 2005). For

example, the sites may have been surveyed on different

days and with varying effort, as is the case in our

analysis of the Swiss bird survey data (see Application to

the Swiss Survey of Common Breeding Birds Data). We

will model such effects using a typical logistic regression

formulation in which the probability of detection at site i

and occasion t is pit, and then

logitðpitÞ ¼ f 0ita ð4Þ

where logit( p) ¼ log( p/(1 � p)) is the logit transforma-

tion, f 0it is a vector of measured covariates at i and t. The

dependence of the multinomial cell probabilities in Eq. 3

on a via Eq. 4 will be expressed as pih(a).

Spatial models of abundance

A natural ecological framework for characterizing

spatially referenced data and motivating the construc-

tion of spatially explicit models of abundance can be

achieved by regarding the collection of sample locations

as a snapshot in time of a metapopulation (Levins 1969,

Hanski 1999). In the classical sense, a metapopulation

consists of spatially referenced sub-populations that

interact through time. Here we consider that this

metapopulation has been sampled over a sufficiently

short interval so that the local population structure is

not affected by such interactions. Thus, for our practical

purposes here, in the most fundamental sense, a

metapopulation is simply ‘‘a population of (local)

populations indexed by space’’; i.e., a collection of

spatially referenced populations. Note that, at least for

our application, the spatial indexing of sample units

yields a metapopulation by design rather than from its

biology, which we have also employed in similar

applications (Royle 2004a, b, Dorazio et al. 2005, Kéry

et al. 2005). Also note that use of the present version of

our model is limited to short periods within which the

abundance and location of territories is static, i.e., to

single season data.

It is natural to provide a probabilistic characterization

of the metapopulation, by imposing a probability

distribution on local population size Ni, say g(N; h).
The specification of such models facilitates a general

description of patch occupancy: the event that patch i is

occupied is equivalent to the event that Ni . 0, and

patch occupancy is the metapopulation average Prg(N .

0; h). Thus, specification of a model for local abundance

automatically yields a model of occurrence and infer-

ences concerning both characteristics may be achieved

within the same abundance modeling framework. In

addition, this metapopulation structure is, in essence, a

prior distribution for the unobserved parameters fNi; i¼
1, 2, . . . R). This additional model structure provides the

framework for combining a large number of spatially

referenced count surveys, such as is the case in our

motivating Swiss breeding bird survey.

An equivalent solution to managing the high-dimen-

sional abundance parameter is to view fNi; i¼ 1, 2, . . . ,

Rg as a collection of latent variables: in effect, nuisance

parameters to be removed from the likelihood by

integration. Because this abundance process is related

to the distribution of organisms in space, natural models

can be imposed that may be sensibly interpreted in the

context of most spatial animal sampling problems. For

example, we might consider the obvious null model in

which animals distribute themselves according to a

homogeneous Poisson process so that, when aggregated

into units of equal sized (i.e., 1 km2 quadrats), we have

that Ni ; Poisson(k) where k is the expected number of

territories per quadrat.

Of course, k need not be constant and the extension to

an inhomogeneous point process underling the distribu-

tion of animals is straightforward. In the case of the

Swiss bird data, we have a number of landscape

covariates thought to influence abundance and so we

consider models of the form Ni ; Poisson(ki) with

logðkiÞ ¼ m 0
i b ð5Þ

where mi are measured covariates for quadrat i and b is

the parameter to be estimated.

Over small areas, it may be sufficient to consider the

case where the spatial dependence in ki is only a function
of measured spatial covariates. However, when the data

are collected over large regions the possibility of latent

spatial variation beyond that accounted for by covari-

ates should be considered because it is unlikely that the

mean structure given by Eq. 5 will be correctly specified.

This generalization forms the basis of many models for

spatially referenced counts (e.g., Moller et al. 1998,

Wolpert and Ickstadt 1998, Best et al. 2000, Wikle 2003,

Thogmartin et al. 2004).

Models of latent spatial variation.—One approach to

accommodating spatial structure in models of count

data is to embed a Gaussian random field model into

Eq. 5 and we adopt that general strategy here. In the

case where the data are counts derived from an

inhomogeneous Poisson process, such models are often

referred to as log-Gaussian Cox processes (Moller et al.

1998, Brix and Diggle 2001, Brix and Moller 2001). In

the present case, the log-Gaussian Cox process governs

the unobserved latent abundance parameters, providing

the framework both for combining these spatially

referenced data sets, and also facilitating the spatial

inference problems of interest.

To parameterize spatial variation in mean abundance,

define u(s) [ log(k(s)) for some quadrat located (i.e.,

centered) at s and suppose that:
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uðsÞ ¼ mðsÞ 0bþ zðsÞ þ eðsÞ ð6Þ

where e(s) is Gaussian noise with mean 0 and variance

r2
e , and z(s) is a latent Gaussian spatial process defined

on the coordinate system indexed by s. In the present
case, s is discrete, being the possible quadrat centers of

the 41 365 1-km2 nonoverlapping quadrats from which

the MHB sample was drawn. Following our previously

established notation, we index the coordinates of the

sampled quadrats as si; i¼ 1, 2, . . . , 238. The collection
of random effects z(si); i ¼ 1, 2, . . . , 238 are surrogates

for unmodeled spatial variation [i.e., not due to the fixed

effects in (5)] while the uncorrelated noise term in Eq. 6
allows for unstructured site-specific effects beyond the

variation provided for by the Poisson assumption.

The model in Eq. 6 is analogous to the ‘‘measurement

error’’ model in classical geostatistics (Cressie 1991:112–

113) and, as a prior for the log-mean of a Poisson

distribution, is the Poisson-lognormal model (Banerjee

et al. 2004:162–165) which is now in widespread use in

many applied disciplines. Estimation and prediction

under this model was first formalized by Diggle et al.
(1998; see also Moller et al. 1998). Adopting the

geostatistical ‘‘generalized linear prediction’’ formula-

tion (Diggle et al. 1998), z(s) is a spatially correlated

Gaussian process with correlation function kh(||s � s0||)

where ||s � s0|| is the distance (km) between quadrat

centers and h is the unknown parameter to be estimated.

We consider the exponential correlation model defined

as kh(||s� s0||)¼ e�||s�s
0||/h. Thus, the collection of spatial

effects at the sample locations, z ¼ (z(s1), z(s2), . . . ,

z(s238)), is multivariate Gaussian:

z ; Gau 0;r2
z Rh

� �
where

Rh½i; j� ¼ e�jjsi�sj jj=h:

Under this model, the variance components are

poorly identified when priors are too diffuse (some

relevant discussion of this can be found in Banerjee et al.

[2004:164–165]). However, we prefer this formulation

for two reasons. First, it appears more meaningful in

terms of accommodating excess-Poisson variation when
N(s) is viewed conditionally on the latent process z(s)

(consistent with the manner in which we would interpret

maps of abundance or occurrence). Consider that z(s)

can be thought of as a latent covariate that describes

variation in abundance across the landscape. Under the

model without e(s), abundance at quadrats with the

same z(s) is Poisson whereas, in the model containing the
noise term, the marginal distribution of N(s) is over-

dispersed relative to the Poisson. We would certainly

expect demographic processes operating at very local

scales to induce such over-dispersion, even though we

may not be able to identify causal factors explicitly.

Thus, while the variance components would not be

identifiable in a frequentist sense (i.e., under flat priors),

we believe that this does not imply a lack of

interpretability of the model. A second, practical,

advantage to having the small-scale variance component

is that it yields a simpler implementation of the MCMC

algorithm for estimation and prediction (see Appendix

A). If the interpretability of over-dispersion was in

question, one could still achieve this benefit by setting re

to be arbitrarily small.

For purposes of analysis by Markov chain Monte

Carlo (MCMC), we reparameterized the model so that

covariates thought to influence abundance were param-

eterized in the mean of z(s), i.e., E [z] ¼ Mb. This

hierarchical centering (Gelfand et al. 1995) yields a

Markov chain with better mixing. Thus, the logarithm

of the Poisson intensities are independent normal

ui [ logðkiÞjzðsiÞ; Gau½zðsiÞ;r2
e � ð7Þ

for i¼ 1, 2, . . . , 238 or, for the vector of log intensities,

u j z, r2
e ; Gau(z, r2

eI) and, as before

zjb; h ; Gau Mb;r2
z Rh�:

�
Modeling spatial coverage bias.—An important fea-

ture of the Swiss Survey of Common Breeding Birds is

that, partly owing to the topographically challenging

terrain, sample plots were not exhaustively sampled.

Instead, each observer traverses a quadrat-specific

sample route through the quadrat (mean length ¼ 5.12

km, minimum ¼ 1.2 km, maximum ¼ 9.4 km), with

routes being consistent among surveys of the same

quadrat. Our view is that route length affects the

number of birds exposed to sampling; i.e., it is a

surrogate for sample area. Consequently, one might

include it as an additive offset in a model for log(k).
However, more likely there is perhaps a diminishing

returns; as the route length increases the path tends to

meander throughout the quadrat yielding some degree

of redundant sampling. We therefore considered the

following parameterization for the effect of route length:

logðkiÞ ¼ b0 þ b1

1

Lengthi

� �
: ð8Þ

For b1 , 0, ki is an increasing function of sample route

length, Lengthi. In making predictions (e.g., at un-

sampled quadrats), we omit the Lengthi term in Eq. 8

because exp(b0) is the density of the quadrat under

exhaustive sampling (i.e., as Lengthi! ‘), which we will

refer to as ‘‘saturation density.’’

We provide more discussion of this issue of spatial

coverage bias, and parameterization of its effect, in

Appendix B.

BAYESIAN ANALYSIS BY MARKOV CHAIN MONTE CARLO

Because the model contains latent structure in the form

of a spatially indexed (and correlated) random effect, we

adopt a procedure for fitting the model and prediction

based on MCMC. The spatial effects pose some difficulty

in attempting to numerically integrate the likelihood (as

noted also byDiggle et al. 1998). To deal with these spatial
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effects, we devised an MCMC algorithm for obtaining

posterior samples of the model parameters. The algorithm

was developed in the free software package R (Ihaka and

Gentleman 1996, R Development Core Team 2005) using

conventional methods based on the Metropolis-Hastings

algorithm and Gibbs sampling, yielding a hybrid algo-

rithm referred to generically as Metropolized Gibbs

sampling (Robert and Casella 1999: section 7.3). Because

the structure of the algorithm is fairly conventional, we

avoid a detailed description of each component of the

algorithm. Some details are given in Appendix A (see also

Diggle et al. 1998). We believe that similar models could

now be fitted conveniently using the freely available

software WinBUGS.

To fully specify the model, we require prior distribu-

tions for the model parameters. We adopted priors that

are customarily viewed as expressing little prior informa-

tion about model parameters. We assumed constant

priors for the parameters governing detection probability,

[a] } 1, and similarly for the parameters governing the

abundance covariates [b] } 1. In addition, we have the

variance components and correlation parameter h. Under

the formulation of the model described in the previous

section, the variance components are poorly identified and

so prior distributions cannot be arbitrarily vague (Baner-

jee et al. 2004:164). Thus, for the variance components, we

assumed the customary gamma priors for the precision

parameters 1=r2
z and 1=r2

e , both having parameters shape

¼ 0.1 and scale¼ 10, using the shape–scale parameteriza-

tion of the gamma distribution in R. This yields a ‘‘u-

shaped’’ prior with mass concentrated near 0 and 1,

having expected value for the ‘‘signal to noise ratio’’ of 0.5,

an ostensibly ‘‘fair’’ prior outcome (Banerjee et al.

2004:165). For the prior distribution for the correlation

parameter h, we used the reference prior for Gaussian

random field model suggested by Berger et al. (2001), but

with the support of log(h) discretized on a regular grid for

reasons of computational efficiency. Additional details on

estimation and prediction are contained in Appendix A.

Each iteration of the MCMC algorithm proceeds by

sequentially drawing samples of the log-intensity pa-

rameters, log(k(si)), the vector of spatial effects z, and

remaining structural parameters (a, b, r2
e , r2

z , h) from
their conditional posterior distributions. Operationally,

the Poisson log-intensities u(si) [ log(k(si)) (i.e., for
sampled quadrat i) are updated using a Metropolis-

Hastings step (based on the integrated likelihood, see
Appendix A). Given u ¼ uðsiÞf gR

i¼1, the vector z is
updated by drawing a sample from a multivariate

normal distribution using the Cholesky factorization
method. Then, b can be updated as a draw from a low-

dimensional multivariate normal distribution. The
detection probability parameters, a are sampled by

Metropolis-Hastings, and the variance components
from conjugate inverse-gamma distributions. Finally,

the logarithm of the correlation parameter (h) is sampled
using a Metropolis step, with candidate values generated

by perturbing the current value of log(h). These steps are
repeated a large number of times after a suitably long

burn-in period required to ensure that sampling from
the target posterior distribution is achieved.

APPLICATION TO THE SWISS SURVEY

OF COMMON BREEDING BIRDS DATA

The Eurasian Jay

The Eurasian Jay (Garrulus glandarius), a small crow,
is a medium-sized (140–190 g), widespread, typical, forest

bird in Switzerland. It occurs up to the tree limit at about
2000–2200 m. According to results from the last Swiss

breeding bird Atlas project (Schmid et al. 1998), highest
observed density (without correction for imperfect

detectability) is about 3 pairs/km2 and occurs at around
800–1100 m elevation. Density declines somewhat below

that and, above 1100 m, declines to zero at about 2200 m.
The jay is recognized as a species whose elusive behavior

and difficult habitat during the breeding season make
abundance assessment particularly difficult (Schmid et
al. 1998). Table 2 contains the example of the territory

encounter history frequencies for 10 quadrats. We note
the sparsity of the data largely motivates the need for a

model-based means of integrating the information from
among many sample quadrats.

We chose the jay in this case study for biological and
for technical reasons. The jay is a representative of many

other forest species, for which imperfect detectability is
of particular concern in assessments of abundance.

Furthermore, the jay did not challenge crucial assump-
tions of our model. It is sedentary in Switzerland and the

distribution and number of territories can be assumed to
be constant and static during the surveys. In addition, its

density is not so great as to make individual territory
recognition a challenge.

Models of abundance and detection

The encounter history frequencies for quadrat i are
assumed to have a multinomial distribution (Eq. 2) with
index Ni and cell probabilities pihf g7

h¼0. The latter are

parameterized in terms of site-specific detection proba-
bilities pitf g3

t¼1 with covariate effects modeled according

TABLE 2. Detection history frequencies for the Eurasian Jay
(Garrulus glandarius) on 10 sample quadrats.

Quadrat 100 010 001 110 101 011 111

1 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 2 0 0 0 0 0
4 1 0 0 0 0 0 0
5 1 0 0 0 0 0 0
6 1 0 0 2 0 1 0
7 0 0 0 0 0 0 0
8 0 0 0 1 1 0 0
9 2 0 0 0 0 0 0
10 1 1 3 2 2 4 0

Note: Encounter histories consist of a string of three digits,
such as ‘‘110,’’ which indicates that a particular, putative
territory was detected on the first two surveys, but not on the
third survey.
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to Eq. 4. We consider two covariates on detection

probability. First, a standardized metric of sample day

to account for variation in detectability due to

behavioral changes over the course of the breeding

season. Second, sampling effort (duration of survey)

varied among quadrats due both to variation in the

length of the sample path chosen through each quadrat

(see Discussion) and also the rate at which each observer

traversed the route. Thus, we defined a standardized

sampling intensity metric as the length of the sample

route divided by the duration of the sample (henceforth

sampling ‘‘rate’’). Thus, f 0i ¼ [1, Dayit, Day2
it, Rateit] (the

1 represents an intercept). The local abundance param-

eters, Ni, are assumed to be Poisson with mean ki with

log(ki) ¼ zi þ ei, where eif gR
i¼1 are independent errors

with variance r2
e , and zi [ z(si) are spatially correlated

random effects with mean m 0
i b, variance r2

z , and

exponential correlation parameter h. Elevation and

forest cover were chosen as landscape covariates

thought to influence density. Because of the very large

elevational gradient in Switzerland, we suppose that the

elevation effect is quadratic. A third covariate included

in the model is route length. For reasons discussed

previously (see Modeling spatial coverage bias), the

inverse of route length was included in the linear

predictor. Thus, mi¼ [1, Elevi, Elev2
i , Foresti, Length�1

i ].

Results

The MCMC algorithm outlined in Bayesian Analysis

by Markov Chain Monte Carlo was run for 1 3 106

iterations after a 100 000 iteration burn-in. Every 50th

iteration was retained for purposes of inference and

summarization. Posterior summaries of the model

parameters are given in Table 3. For purposes of

evaluating convergence, three shorter chains of length

210 000 were run (burn-in ¼ 10 000) and convergence

was assessed using the Brooks-Gelman-Rubin diagnos-

tic (Gelman and Rubin 1992), using the facilities

provided in the R add-on library BOA (Smith 2005).

Results indicated convergence, with scale reduction

factors near 1 (1.0001–1.012) for all parameters, and

the multivariate potential scale reduction factor was

1.0087.

The effect of sampling rate was negative, as expected

(Eq. 2). That is, detection probability of an individual

jay territory decreases with increasing sampling rate

along a route. The estimated quadratic effect of date is

not convex as expected (Fig. 4). We initially suspected a

date by elevation interaction because higher elevation

sites, where breeding activity commences later in the

season, tended also to be sampled later in the season.

Further analyses (not shown here) indicated this

interaction to be unimportant. An alternative plausible

explanation is that birds are more detectable early in the

breeding season due to behavior associated with the

establishment of territories and nest initiation. The

timing of the minimal detectability in fact appears to

coincide with the late nestling period, when parents are

most busy foraging (Maumary et al., in press), and the

slight increase later may be due to recently fledged

nestlings.

TABLE 3. Posterior summaries of model parameters.

Parameters Mean Median SD q0.025 q0.975

Detection

a0 (intercept) �0.545 �0.544 0.087 �0.718 �0.373
Date (linear) �0.087 �0.087 0.042 �0.169 �0.003
Date (quadratic) 0.041 0.041 0.023 �0.005 0.086
Rate �0.170 �0.170 0.079 �0.322 �0.016

Abundance

b0 (intercept) 1.693 1.693 0.318 1.066 2.313
Elevation (linear) �1.168 �1.164 0.166 �1.502 �0.853
Elevation (quadratic) �1.320 �1.321 0.307 �1.922 �0.720
Forest cover 0.401 0.400 0.068 0.270 0.537
Route length �4.239 �4.218 1.326 �6.874 �1.677
k0 5.719 5.433 1.866 2.905 10.104
re 0.286 0.279 0.080 0.152 0.454
rz 0.340 0.333 0.097 0.177 0.540
log(h) 2.512 2.530 0.949 0.668 4.678

Note: For abundance, b0 is the saturation density parameter on the log scale, k0 is the saturation density on the arithmetic scale,
re is unstructured ‘‘noise’’ variance in log-abundance at the quadrat level, rz is the variance of the latent spatial process, and log(h)
is the logarithm of the spatial correlation parameter.

FIG. 4. Estimated response of detection probability (for
European Jay) as a function of day from initiation of survey (1
¼ 1 April).
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The posterior mean detection probability [i.e., of

expit(a0)], is 0.367 (SD ¼ 0.0203), which is the

probability of detecting a territory on the mean date

of the surveys conducted (24 May), with an observer

traversing a route at average rate. Thus, the probability

of not detecting a territory at all, during three surveys,

that is exposed to sampling by a prescribed route is

about (1 � 0.367)3 ¼ 0.250.

The estimated effect of route length (b1 in Eq. 8) was

negative (Table 3), indicating the expected diminishing

return of jay territories exposed to sampling with

increasing sampling route length (Fig. 5). The estimated

saturation density (k0 ¼ exp(b0), Table 3), indicates

roughly (posterior median) 5.43 territories per quadrat.

Note that the average number of observed territories

was 1.88. This adjustment of 1.88 to 5.43 (a net increase

of 3.55) includes territories that were exposed to

sampling by the sample route but not detected (non-

detection bias), and territories present on the quadrat

but not exposed to sampling along the route (spatial

coverage bias).

The fitted curve (Fig. 5) allows us to partition the

relative contributions of non-detection from spatial

coverage bias. In particular, for example, the exposed

territory density of a typical route of length 5.2 km is

exp(1.693) exp(�4.239/5.2) ¼ 2.41 territories. At this

route length, the model suggests that we exposed to

sampling only about 2.41/5.43 ¼ 44.2% of the available

territories. Previously, we noted that about 75% of

exposed territories are detected (in three visits at the

mean survey date, by an observer traveling an average

rate). Thus, for a route of average length, spatial

coverage bias is by far the largest contribution to overall

bias (see also Discussion: The Swiss survey).

Landscape variation in territory density.—There was a

strong quadratic response of density to elevation (Fig.

6). This response surface achieved a maximum at around

720 m, i.e., at somewhat lower elevation than the

observed maximum density (800–1100 m), emphasizing

that observed counts are the combination of true

abundance and detectability. Jay density was much

higher when forest cover was greater in a quadrat (Table

3).

The spatial structure in the model for abundance is

governed by the correlated spatial process, z(s). The

estimated posterior of log(h) (summarized in Table 3),

implies a modal value of h of approximately 12.4 km.

The parameter h is usually referred to as the correlation

range parameter. It does not have an intuitive meaning.

We can however restate this estimate in terms of the

correlation between quadrats at any, arbitrary, distance.

For example, q1, the correlation between the abundance

of neighboring quadrats (i.e., separated by 1 km), is q1¼
0.92 and for quadrats located 12 km distant, q12¼ 0.38.

Normally, predictions of z(s) can be thought of

conceptually as residuals in a fit of log(k(s)) on the

prescribed covariates. However, under the hierarchically

centered parameterization (described in The Model:

Spatial models of abundance: Models of latent spatial

variation), in which E [z(s)] ¼ m(s)b, the spatial process

includes the nonzero mean, m(s)b, a function of

elevation, forest cover, and route length. To depict the

z(s) map, we thus used the centered values, i.e., having

mean 0. These residual predictions for each of the 41 365

quadrats of Switzerland are shown in Fig. 7. This map

shows clearly regions of under- and over-prediction

relative to the regression model containing forest cover

and elevation effects.

FIG. 5. Relative fraction of the quadrat population exposed to sampling as a function of route length (solid line). The
histogram shows the distribution of the route length in sampled quadrats.

FIG. 6. Estimated response of European Jay density to
elevation in Switzerland.
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The model yields quadrat-specific estimates of the

number of territories, N(s). The posterior means of each

N(s) are shown in Fig. 8. We used this information to

estimate the total number of jay territories in Switzer-

land. The posterior distribution of this quantity (Fig. 9)

has mean 227 091 and 95% CI (133 169–369 521). This

indicates approximately 5.48 territories per quadrat,

roughly consistent with the posterior median of k0 ¼
5.43. We would probably expect a discrepancy due to

slight biases in the sample with respect to the landscape

covariates included in the model. For example, higher

elevation quadrats, or those in rugged terrain, are

sampled somewhat less in proportion to their availabil-

ity because it is difficult to sample these quadrats. For

comparison, the estimated total number of jay numbers

in Switzerland when based on the effectively surveyed

area of each quadrat was 95 786 with 95% posterior

interval (84 544–108 524). To obtain that estimate, the

model was rerun without route length in the model for

log(k). The naive estimate ignoring imperfect detection

and incomplete quadrat coverage yields 77 766 territo-

ries. And, during the latest Atlas project, the total

population was estimated at between 50 000 and 70 000

pairs (Schmid et al. 1998), again absent any adjustments

for imperfect detection and incomplete sample coverage.

Therefore, imperfect detection of jay territories and

incomplete quadrat coverage may yield an almost

threefold underestimation of true density in this species,

with detectability bias (net, resulting from three surveys)

responsible for approximately 12% and coverage bias

for approximately 88% of the downward bias.

Maps provide a gross characterization of patterns in

abundance and occurrence and might form the basis of

some management and assessment activities. However,

we may also use the model to obtain estimates or

predictions of local population attributes, e.g., estima-

tion of N for any particular quadrat. This objective

might conceivably be of interest for some management

and assessment problems and, for sparse data, this

model-based small-area estimation can yield great

improvements in the precision of predictions (Dorazio

et al. 2005). Our model does permit estimation of

abundance and occurrence probability at the scale of a

single quadrat. For example, we selected one quadrat

where four territories were detected, yielding three

detection histories with frequencies x100 ¼ 1, x110 ¼ 2,

and x011¼ 1. The estimated posterior probabilities of N

¼ f4, 5, 6, 7, 8, 9, �10g for that quadrat were (0.084,

0.173, 0.193, 0.176, 0.132, 0.095, 0.148). Thus, for

example, a reasonable point estimate of N for this

quadrat is the modal value N ¼ 6 (having probability

0.193). While the precision associated with such point

estimates is not particularly remarkable, we do not see

an effective method of conducting formal inference for

such problems absent a modeling framework that

permits the borrowing of information across space.

Finally, the posterior predictive means of w(s) ¼
Pr[N(s) . 0] for each quadrat are mapped in Fig. 10.

This figure presents a probabilistic range map of the Jay

in Switzerland. Unlike the myriads of species distribu-

tion maps produced (e.g., Scott et al. 2002, Araujo and

Rahbek 2006, Coudun et al. 2006, Elith et al. 2006,

FIG. 7. Estimated posterior means of the spatial process, z(s), centered about the regression mean containing elevation, forest
cover, and route length as described in Models of abundance and detection.
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Latimer et al. 2006), it does take into account both

landscape structure and possible non-detection in

quadrats where the Jay did in fact occur and which

renders observed zeros ambiguous.

DISCUSSION

A vast number of ecological studies aim at inference

about spatial variation of abundance and occurrence of

species based on replicate spatial samples. Virtually all

such studies have neglected two issues that are

fundamental to almost all animal and plant monitoring

programs: that the samples are spatially referenced and

therefore, closer samples may be more similar to each

other than more distant samples, and that, typically, not

all animals or plants exposed to sampling are detected

(‘‘imperfect detection’’).

We have developed a hierarchical spatial model that

provides a rigorous and flexible framework for address-

ing spatial inference problems about abundance and

occurrence from survey data. This model simultaneously

addresses these two fundamental considerations of

sampling animal or plant populations. Within this

framework for modeling abundance, a unified treatment

of inference for both abundance and occurrence is

achieved. Commonly, inference about these two quan-

tities is approached independently. For example, count

data are often quantized (e.g., MacKenzie et al. 2002,

Dorazio and Royle 2005) in order to develop models of

occurrence. This represents some loss of information. In

addition, this treatment also disregards the probabilistic

linkage between abundance and occurrence (i.e., that

occurrence is the event N . 0 [Royle and Nichols 2003]).

It has been proposed that occurrence of, and abundance

given occurrence of a species, are best modeled as two

separate processes (e.g., Cunningham and Lindenmeyer

2005). We agree that this might be useful in some cases

where one or a few limiting factors determine the

occurrence of a species, and a different set of factors

determine variation in abundance. However, we believe

that this is unlikely to occur frequently in practice and

that in the vast majority of species both occurrence and

abundance are the result of the combined action of

multiple factors.

In our application, we adopt a spatial model for

abundance based loosely on the consideration that

territories are distributed spatially according to an

inhomogeneous Poisson process. This model serves as

a prior distribution governing local abundance, which is

unobserved. We believe that this is the most interesting

FIG. 9. Posterior distribution of the total number of
European Jay territories in Switzerland.

FIG. 8. Estimated abundance map [posterior means of N(s) for each quadrat] of the European Jay in Switzerland.
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aspect of our application. That is, while spatial sampling

and imperfect detectability are nearly universal com-

monalities in animal sampling problems, the two ideas

have not been addressed simultaneously to any great

extent. While many inference problems are inherently

spatial, we believe that the need for model-based

estimation is especially acute in many avian surveys

because the density of territorial species is low, leading

to sparse data with observed zeros at many sites. In such

cases, one cannot estimate local abundance effectively in

the absence of a model that allows for the combination

of information among spatial samples. The model

proposed here allows for the estimation of local

abundance at the scale of a quadrat, or abundance

aggregated over multiple quadrats (e.g., all quadrats in

Switzerland; see Fig. 9). The model also permits,

directly, characterizations of patterns in abundance

and occurrence (i.e., estimation of range or distribution

maps), which can provide useful summaries of species

range, and the relationship between these quantities and

landscape structure such as can be useful for conducting

formal assessments of landscape change, management

requirements or tests of ecological relationships.

Closure, territory identification, and parametric

model assumptions

In order to achieve a clear interpretation of the data

and of model parameters, we have assumed that the

population is closed to demographic processes and

movement, i.e., that the number and location of

territories stays constant during the breeding season.

Furthermore, we assume that each sighting can be

unequivocally assigned to an identifiable territory, i.e.,

that territory ‘‘identification’’ is perfect. This is analo-

gous to the assumption that ‘‘marks are not lost and

read perfectly’’ in classical capture–recapture. Conduct-

ing temporal repeats in a time period as short as

possible, and spending more time on a quadrat for each

repeat would be one way of ensuring that these

important assumptions are met. The European Jay in

Switzerland is sedentary and individuals are present for

detection throughout the sampling season. The species

does not nest at high densities, therefore territory

identification will have been assessed adequately in most

cases. Furthermore, even though the total survey

duration was three months, the three surveys in

individual quadrats were spaced much less in time, and

typically within about one month. In summary, we

believe that in our application both the assumption of a

static population and that of perfect territory identifi-

cation were adequately met. We note however, that our

model may not be applicable for more dynamic species,

for surveys conducted over longer time intervals, and for

species nesting at high densities or having large

territories. However, it is clear that for such species

the validity of any assessment of abundance, also the

naive one that disregards imperfect detection, will be

questionable.

One particular manner in which the assumption of a

static and closed population may be violated is when a

FIG. 10. Estimated probability of occurrence of the European Jay in Switzerland (posterior mean of Pr[N(s) . 0] for each
quadrat).
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migratory species has not yet fully arrived to the

breeding grounds by the start of the survey period.

Such a closure violation may be addressed by either

replacing the respective data with missing values or by

modelling a quadratic effect of season into detection

probability. At the start of the season, detectability may

then be close to zero and abundance estimates should be

unaffected.

We made a number of purely subjective modeling

decisions that we did not formally evaluate. Although

we agree with a referee that one should be aware of

potential sensitivities to such modeling choices, we have

chosen to avoid certain of these, focusing instead on

developing the basic formulation of the model and

investigating its application. For example, we assumed

the customary logit and log-linear relationships between

covariates and detection probability (Eq. 4) and mean

abundance (Eq. 5), respectively. Secondly, we made a

parametric assumption about the form of the correlation

model (see The Model: Spatial models of abundance:

Models of latent spatial variation). In both cases, we see

no formal basis for consideration of any particular

parametric form and so did not consider alternative

parameterizations for that reason. With specific regard

to the model for the correlation function, while other

parametric functions are in fairly widespread use, our

view is that the parametric form is irrelevant given the

level of the random effect in the hierarchy. In the present

case, z(s) is not a real process (i.e., that could

conceivably be observed), and so the mathematical

properties induced by choice of correlation functions

(e.g., its differentiability) are practically irrelevant. A

more fundamental assumption that underlies almost all

animal sampling problems is that the observed ‘‘en-

counter histories’’ are multinomial. This is justified when

the detection/non-detection events can be regarded as

independent Bernoulli trials. A number of plausible

departures are evident (see previous paragraph), includ-

ing nonindependence among individuals, and across

surveys by the same observer. We believe that certain

model extensions (e.g., nonindependence among indi-

viduals) would require additional information, whereas

others (e.g., nonindependence among samples) might be

achievable by modifications to the structured multino-

mial cell probabilities, although we have not considered

such extensions in the present work.

Regardless of the many modeling decisions that are

adopted, the adequacy of a particular model, i.e., how

well it fits the data, should typically be of some concern.

In the present case, we assessed the goodness of fit using

the Bayesian P value (Gelman et al. 1996). To

implement this, some discrepancy measure (a fit statistic)

between the observed data and the expected data under

the model in question is computed at each iteration of

the MCMC algorithm (using the current values of the

parameters). This is compared to a reference distribu-

tion, which is based on the distribution of the

discrepancy measure computed from simulated data

(again, using parameter values at each iteration of the

MCMC algorithm). If the model is correct, the

distribution of the fit statistic should be centered around

0.50, and poor fit is indicated by extreme values (say,

near 0 or 1). In the present application, we used the sum

of the squared Pearson residuals for the fit to the total

number of territories observed [i.e., n(s)] as the fit-

statistic, yielding a P value of 0.346 when averaged

across three MCMC runs of length 200 000 (post burn-

in), providing some evidence of model adequacy.

The Swiss survey

Our motivating application, the Swiss Survey of

Common Breeding Birds, produces encounter history

data on territories that may be viewed as conventional

capture-recapture data. This yields a multinomial data

model with a spatially indexed abundance parameter.

We focused on developing abundance and occurrence

maps for a species that made use of covariates that

influence abundance and also detection probability. The

model yielded a formal adjustment of the number of

observed territories in each quadrat to compensate for

imperfect detection, and also that the quadrats were not

completely sampled (i.e., that route length did not

achieve saturation of the quadrat).

It may be argued that one weakness of the Swiss

survey is that quadrats are sampled with varying effort:

sample route length varies among quadrats. This leads

to what we referred to as spatial coverage bias. Our

solution to dealing with this sampling problem was to

accommodate route length as a covariate on the fraction

of the quadrat population exposed to sampling, using a

parameterization that yields an estimate of the quadrat

population size under saturation sampling, i.e., as route

length tends to infinity. While this sampling situation is

not ideal, it is necessary because it would be difficult to

implement a large-scale survey based on volunteer

observers for which the protocol dictated substantial

expenditures of effort by every observer. We note that

effort adjustments are critical considerations in other

large-scale animal surveys that lack a fully standardized

protocol, such as the large-scale ‘‘Christmas bird count’’

survey in North America (e.g., Link and Sauer 1999).

Our model-based adjustment has a clear interpretation if

habitat is homogeneous within a quadrat and transect

routes are placed randomly within the quadrat. How-

ever, routes were not really randomly placed, and

therefore, if route length and placement varies in

response to habitat heterogeneity (e.g., the amount and

distribution of forests), then our adjustment might

‘‘over-correct’’ to yield an estimate of the abundance

that would be expected were all quadrats covered

entirely by the same type of habitat as where the route

is located. Therefore, we suspect that our estimated

‘‘accumulation’’ of territories might actually be too slow

because observers probably pick exceptional routes

through the quadrats, i.e., avoiding lakes, villages,

roads, and so on (thus, less desirable habitats remain
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unsampled). We discuss this issue of spatial coverage

bias further in Appendix B.

The naive estimate of the national total number of jay

territories was about 78 000. Accounting for imperfect

detection added approximately 18 000 territories and

adjusting for coverage bias added another 131 000

territories to yield a fully corrected estimate of the

national total of about 227 000 territories. The national

abundance estimate was thus almost three times higher

than previous estimates that did not account for these

important factors. These results emphasize the impor-

tance of adjusting analyses of abundance for imperfect

detection and incomplete coverage of the spatial samples

in the Swiss Survey of Common Breeding Birds. While

varying spatial coverage may not be an issue in other

ecological studies or large-scale monitoring or mapping

studies, that of imperfect detectability undoubtedly is.

Our study demonstrates that abundance may be grossly

underestimated when simple counts are used.

Many would question the need for actually estimating

population size and argue that most applications are

only interested in comparisons of abundance (or

occupancy) over time (e.g., population trends), regions

(e.g., to direct conservation efforts, or pest management

actions, preferentially to high-density areas), habitats or

other classifications. If such comparisons are really the

only objective of a study and if the expectation of

detection probability and of the degree of coverage bias

are both constant over the dimensions of comparison,

then this approach is valid. If on the other hand any of

the myriad of factors that affect detection probability or

the degree of coverage bias changes, then resulting

‘‘relative abundance’’ or ‘‘relative occurrence’’ indices

will yield biased comparisons. Formally accounting for

detectability and coverage in the model confers an

insurance against any such unexpected and perhaps even

unmeasurable effects. Furthermore, even if relative

abundance indices are used, the important assumption

of stationary detectability and degree of coverage bias

ought to be tested, perhaps for a subsample of quadrats

and at some points in time in a longer running

monitoring program.

In other cases, however, unbiased estimates of

abundance or occurrence of a species are required. For

instance, real abundance estimates are required to

evaluate the extinction probability of small populations

of a rare species, to target pest management of over-

abundant species or to decide on culling levels of

harvested species. Then, disregarding issues of detect-

ability and/or coverage bias in the data on which

conclusions and decisions are based may imperil

threatened or harvested species and lead to inefficient

management. One (hypothetical) example with the Jay

might be an investigation into the impact of Jay

predation on populations of small passerines. The Jay

may be hunted in Switzerland partly for its perceived

negative effect on small passerines. In a rigorous study

of its impact on potential prey populations, it would

make a tremendous difference if average Jay abundance

was assumed to be 1.88 territories per km2 (the average

naive density estimate) or rather 5.43 territories per km2

(the best available density estimate accounting for both

imperfect detectability and incomplete sample coverage).

Often, count or detection/non-detection data are

available that do not contain information about the

sampling process, i.e., about detection probability or

effective sampling area. We would not argue that such

data are a priori useless for inference about relative

abundance or occurrence. Especially if they are all that

is available for a given species, geographic area, or time

period, we agree that such data should be analyzed in

the best possible way. However, we suggest that the

results be interpreted with due caution. Unfortunately,

data for which there is no direct information about

observation processes is often all that is available. This

entices many researchers to neglect these important

sampling issues (and also at the design state of a study).

There are still countless studies, ecological or more

applied, e.g., monitoring programs, that are initiated

without taking into account observation processes that

induce error in the form of detection bias or spatial

coverage bias. This, in our view, is irresponsible and

leads to bad science or management.

We believe that the MHB is unique among large scale

monitoring programs in some important ways that

foster the development and application of unique

assessment and inference to MHB data. Important

among these are that it is based on multiple sample

occasions, and it yields a (territory) map with locational

information relating to individual bird detections. This

is unlike the North American Breeding Bird Survey (as

well as other monitoring programs) which only records

gross counts of adult individuals, for a single survey

occasion, and without a precisely defined sample unit.

Intuitively, there is additional information in such data

(i.e., replication as in the MHB) that should be

exploited. Rendering the data into encounter histories

is one way to do that, but perhaps not the only, or best.

We note, however, that while we think that data

resulting from territory mapping is potentially highly

informative about avian population status because it

yields direct information on the detection process, we do

not necessarily advocate territory mapping to the

exclusion of other data collection protocols. Indeed,

the basic modeling strategy that we employed here is

directly applicable to many other common animal

sampling protocols. For example, sampling with multi-

ple observers (Nichols et al. 2000) yields a multinomial

likelihood with cell probabilities that are functions of

detection probability parameters that are specific to each

observer. Other protocols in common use that yield

multinomial data include removal sampling (Farns-

worth et al. 2002, Royle 2004b, Dorazio et al. 2005)

wherein individuals are physically (or passively) re-

moved from the population in successive sampling

intervals, and distance sampling (Buckland et al. 2001,
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Royle et al. 2004) in which the frequency of individuals

in distance classes from a point (or transect) of

observation are recorded. Thus, our model may provide

a very general and unifying framework for abundance

and occurrence estimation problems based on many

spatially replicated sampling schemes.
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Brutvöel in der Schweiz und im Fürstentum Liechtenstein
1993–1996. Schweizerische Vogelwarte, Sempach, Switzer-
land.

Schmid, H., N. Zbinden, and V. Keller. 2004. Überwachung der
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